Satwik Kundu

PhD Candidate | Penn State

🔇 satwik-kundu 🛛 @ mail@satwik-kundu.me 🏾 🎓 Google Scholar

Education

Present Aug 2021	Pennsylvania State University Doctor of Philosophy (Ph.D.) in Computer Science & Engineering Thesis (Tentative): <i>Enhancing the Efficiency and Security of Variational Quantum Algorithms</i> Advisor: Prof. Swaroop Ghosh	State College, PA
June 2021 July 2017	Jadavpur University Bachelor of Engineering (B.E.) in Information Technology Thesis: <i>Facial Expression Recognition using Convolutional Neural Networks</i> Advisor: Prof. Somenath Dhibar	Kolkata, India

Professional Experience

Present June 2022	Penn State University School of EECS Graduate Research Assistant Advisor: Prof. Swaroop Ghosh	State College, PA
	Working on improving the security and optimization efficiency of variational quantum	algorithms (VQAs).
Dec 2022 May 2022	Semiconductor Research Corporation (SRC) <i>Research Scholar Advisors: Dr. Rasit O. Topaloglu, Prof. Suzanne Mohney, Prof. Shengxi Huang</i> Evaluated performance gain for NbAs-based interconnects in cache memories.	State College, PA , Prof. Swaroop Ghosh
May 2022 Aug 2021	Penn State University School of EECS Graduate Teaching Assistant Instructors: Prof. Ishan Behoora, Prof. Griselda Conejo-Lopez Held recitations, review sessions, office hours, and graded assignments for CMPSC 131 a	State College, PA and CMPSC 132.
June 2021 Nov 2019	Jadavpur University Undergraduate Research Assistant Advisors: Prof. Ram Sarkar, Prof. Pawan Kumar Singh, Prof. Worked on language identification using MFCC features and facial expression recogniti	Kolkata, India Somenath Dhibar on using CNNs.
Nov 2020 May 2020	Indian Institute of Technology Kharagpur SEAL [♥] Research Intern Advisors: Dr. Manaar Alam, Prof. Debdeep Mukhopadhyay Performed microarchitectural side-channel attack on Docker containers to assess secur	Kharagpur, India rity vulnerabilities.

Honors and Awards

[2025] Graduate Scholarship Received the Vice Provost and Dean of the Graduate School Student Persistence Scholarship.

[2025] Best Paper Award Received the Best Paper Award (1 of 140+ submissions) at IEEE HOST 2025.

[2024] IBM Quantum Credits Awarded \$70,000 in IBM credits for my research on improving efficiency of VQAs.

[2022] Graduate Research Award One of only two students recognized by the Department of Computer Science and Engineering at Penn State for outstanding research contributions.

[2015] Gold Medal Received a gold medal at the International Olympiad of Mathematics (iOM), organized by SilverZone.

[2015] Silver and Bronze Medal Received a silver medal in the individual contest and a bronze medal in the team contest at the International Young Mathematicians Convention (IYMC).

Publ	ications	S=In Submission, C=Conference, W=Workshop, J=Journal, B=Book C	hapter, * = Equal Contribution
[B-2]	Adversarial Threats in Q <u>Satwik Kundu</u> , Archisman Quantum Robustness in Artif	uantum Machine Learning: A Survey of Attacks and Defens Ghosh, Swaroop Ghosh icial Intelligence, 2025 [Working Chapter]	ses [Springer'25]
[C-9]	Inverse-Transpilation: R <u>Satwik Kundu</u> , Swaroop Gh 35th IEEE/ACM Great Lakes S	everse-Engineering Quantum Compiler Optimization Passe aosh <i>Symposium on VLSI, 2025</i>	s from Circuit Snapshots [GLSVLSI'25]
[C-8]	Adversarial Data Poisoni <u>Satwik Kundu</u> , Swaroop Gł 35th IEEE/ACM Great Lakes S	ng Attack on Quantum Machine Learning in the NISQ Era nosh <i>Symposium on VLSI, 2025</i>	[GLSVLSI'25]

[J-2]	Towards Efficient Optimization of Variational Quantum Algorithms with Par Satwik Kundu, Debarshi Kundu, Swaroop Ghosh	ameter Prediction
	IEEE Transactions on Quantum Engineering, 2025 [In Review]	[TQE'25]
[C-7]	STIQ: <u>Safeguarding Training and Inferencing of Quantum Neural Networks free Satwik Kundu</u> , Swaroop Ghosh 17th IEEE International Symposium on Hardware Oriented Security and Trust, 2025 [Best P	rom Untrusted Cloud <pre>aper Award]</pre> [HOST'25]
[W-1]	SoK: Security Concerns in Quantum Machine Learning as a Service Satwik Kundu, Swaroop Ghosh	Drivery 2024 [HASD @ MICDO'24]
[C-6]	Evaluating Efficacy of Model Stealing Attacks and Defenses on Quantum Neu: Satwik Kundu, Debarshi Kundu, Swaroop Ghosh 34th IFFE/ACM Great Lakes Symposium on VI SL 2024	ral Networks
[C-5]	 Knowledge Distillation in Quantum Neural Network using Approximate Synt Mahabubul Alam, <u>Satwik Kundu</u>, Swaroop Ghosh 28th IEFE/ACM Asia and South Pacific Desian Automation Conference, 2023 	hesis
[J-1]	Exploring Topological Semi-Metals for Interconnects <u>Satwik Kundu</u> [*] , Rupshali Roy [*] , M. Saifur Rahman, Suryansh Upadhyay, Rasit Onu Shengxi Huang, Swaroop Ghosh	ır Topaloglu, Suzanne E. Mohney,
	Journal of Low Power Electronics and Applications, 2023	[JLPEA'23]
[C-4]	Quantum Machine Learning for Material Synthesis and Hardware Security Satwik Kundu [*] , Collin Beaudoin [*] , Rasit Onur Topaloglu, Swaroop Ghosh 41st IEEE/ACM International Conference on Computer-Aided Design, 2022	[ICCAD'22]
[C-3]	Security Aspects of Quantum Machine Learning: Opportunities, Threats and Satwik Kundu, Swaroop Ghosh	Defenses
[C-2]	On the Reliability of Conventional and Quantum Neural Network Hardware Mehdi Sadi, Yi He, Yanjing Li, Mahabubul Alam, <u>Satwik Kundu</u> , Swaroop Ghosh, Ja 40th IEEE VLSI Test Symposium, 2022	vad Bahrami, Naghmeh Karimi [VTS'22]
[C-1]	Quantum-Classical Hybrid Machine Learning for Image Classification Mahabubul Alam, <u>Satwik Kundu</u> , Swaroop Ghosh 40th IEEE/ACM International Conference On Computer Aided Design, 2021	[ICCAD'21]
[B-1]	Spoken Language Identification of Indian Languages using MFCC Features Mainak Biswas, Saif Rahaman, <u>Satwik Kundu</u> , Pawan Kumar Singh, Ram Sarkar Machine Learning for Intelligent Multimedia Analytics: Techniques and Applications, 2021	[Springer'21]
Pate	ents	I=Invention Under Review, P=Patent
[P-1]	Parameter Prediction to Accelerate Convergence of Hybrid Quantum-Classica <u>Satwik Kundu</u> , Debarshi Kundu, Swaroop Ghosh Provisional Patent Application No. 63/498,829	ll Algorithms
[I-2]	Accelerating Deep Learning Through Parameter Prediction Satwik Kundu, Debarshi Kundu, Swaroop Ghosh Invention Discloser # 2023-5622 [In Review]	
[I-1]	A Novel Hybrid Interconnect with Topological Semi-Metals <u>Satwik Kundu</u> , Rupshali Roy, Swaroop Ghosh Invention Discloser # 2023-5608 [In Review]	
Talk	s & Presentations	
"STIC): <u>S</u> afeguarding <u>T</u> raining and <u>I</u> nferencing of Quantum Neural Networks from U	ntrusted Cloud"
>	[Oral] International Symposium on Hardware Oriented Security and Trust (HOST)	May 2025 (San Jose, CA, USA)
"Enha	ancing Efficiency and Security of Variational Quantum Algorithms"	
>	Department of Computer Science, Colorado School of Mines	Feb 2025 (Golden, CO, USA)
"Secu	rity of Quantum Machine Learning Models"	
>	2nd Quantum Computer Cybersecurity Symposium (QCCS), Yale University	Oct 2024 (New Haven, CT, USA)
"Secu >	urity Concerns in Quantum Machine Learning as a Service" [Oral] Workshop on Hardware and Architectural Support for Security and Privacy	Nov 2024 (Austin, TX, USA)

_

"Knowledge Distillation in Quantum Neural Network Using Approximate Synthesis"

> [Oral] Asia and South Pacific Design Automation Conference (ASP-DAC)

"Security Aspects of Quantum Machine Learning: Opportunities, Threats and Defenses"

> [Oral] Great Lakes Symposium on VLSI (GLSVLSI)

"A Shuttle-Efficient Qubit Mapper for Trapped-Ion Quantum Computers"

> [Poster] Great Lakes Symposium on VLSI (GLSVLSI)

Academic Services: Peer Reviewer

Journal	2025	Springer Nature Quantum Machine Intelligence
	2025	Elsevier Neurocomputing
	2025	IEEE Computer Architecture Letters (CAL)
Conference	2022-25	International Symposium on Microarchitecture (MICRO)
	2023-24	International Conference on Quantum Computing and Engineering (QCE)
	2023-24	Design Automation and Test in Europe (DATE)
	2023-24	Asia and South Pacific Design Automation Conference (ASP-DAC)
	2023-24	International Symposium on Hardware Oriented Security and Trust (HOST)
	2024	International Symposium on Computer Architecture (ISCA)
	2024	International Conference on Computer-Aided Design (ICCAD)
	2023	International Conference on Computer Design (ICCD)

Research Experience

Pennsylvania State University

Graduate Research Assistant

- > Designed an ML-based framework to reverse-engineer compiler optimization passes, achieving an F1-score of up to 0.96.
- > Implemented a novel indiscriminate data poisoning attack on QNNs, resulting in over 90% accuracy degradation.
- > Developed a novel framework to safeguard QNNs against cloud-based adversaries; enhanced model security by \approx 70%.
- > Evaluated efficacy of model stealing attacks on QNNs. Proposed novel perturbation based defense techniques.
- > Implemented a prediction technique to accelerate optimization of VQAs by upto $3.3 \times$ while requiring $2.5 \times$ fewer shots.
- > Evaluated performance gain for NbAs-based interconnects in caches and observed IPC improvement of up to 23.8%.
- > Built QML models to explore applications in addressing hardware security challenges, such as classifying PCB defects.
- > Proposed knowledge distillation with approximate synthesis to compress pre-trained QNNs, minimizing retraining.

Jadavpur University

Undergraduate Research Assistant

- > Language Identification: Developed a spoken language identification framework using MFCC features for the recognition of the six most widely used spoken languages in India.
- > Trained a SVM Classifier with static and delta features. Discovered that the best results are obtained using only 13 static features and adding delta and delta-delta features reduces performance.
- > **Emotion Recognition:** Developed a Keras-based facial expression recognition system for identifying facial expressions. Trained the model on the FER2013 database and achieved an accuracy of 72.34%.

Indian Institute of Technology Kharagpur

Research Intern

- > Built a Docker-containerized client-server framework featuring the AES-128 encryption server (T-table version).
- > Conducted a microarchitectural side-channel attack (Flush+Reload) on the framework, demonstrating the challenges of key extraction via cache attacks in containerized environments.

Teaching Experience

Object-Oriented Programming and Data Structures (CMPSC 132)*Graduate Teaching Assistant*Spring 2022

> Managed two recitation sections with over 140 undergraduate students, facilitating weekly quizzes and office hours.

> Organized review sessions and graded assignments and exams, providing detailed feedback to support student learning.

Fundamentals of Programming and Algorithm Design (CMPSC 131) Graduate Teaching Assistant Fall 2021

- > Led three recitations with over 200 undergraduate students from various departments, delivering weekly lectures.
- > Conducted weekly office hours, graded assignments, and developed course materials, including quizzes & assignments.

June 2022 (Irvine, CA, USA)

June 2022 (Irvine, CA, USA)

Jan 2023 (Tokyo, Japan)

June'20 - Nov'20

Nov'19 - June'21

Aug'21 - Present

Mentoring

[2023 - Present] Archisman Ghosh PhD in CSE, Penn State

[2022 - Present] Debarshi Kundu PhD in CSE, Penn State

[2022 - Present] Rupshali Roy PhD in EE, Penn State

Media Coverage

[2025]	Unveiling Circuit Compilation Secrets in Quantum Computing via Machine Learning Quantum Zeitgeist
[2023]	Interconnects: Exploring Semi-Metals, Semiconductor Engineering Semiconductor Engineering
[2022]	Quantum Machine Learning: Security Threats & Lines Of Defense Semiconductor Engineering

Technical Skills

Languages	Python, C/C++, HTML/CSS, JavaScript, SQL, ĽT _E X, Flask.
Tools	GDB, VS Code, Docker, Eclipse, GitHub, MATLAB, gem5, MySQL, SQLite.
Libraries	Qiskit, PennyLane, PyTorch, TensorFlow, Jax, NumPy, Pandas, Scikit, OpenCV, Keras, OpenMP, MPI, CUDA.

Academic Projects

Analyzing BLIP for Image-Text Retrieval

Pennsylvania State University

- > Finetuned BLIP model on Flickr30K dataset achieving near SOTA results despite hardware constraints (batch size: 8).
- > Leveraged CapFilt mechanism to mitigate noisy data, synthesizing captions and filtering mismatched image-text pairs.
- > Conducted hyperparameter tuning (lr: 10^{-4} , 10^{-5} , 10^{-6}) and achieved a 2.7% average R@1 improvement over baseline.

Visual Question Answering with Multi-Modal Fusion

Pennsylvania State University

- > Developed an end-to-end VQA model that integrates a VGG16-based CNN for image feature extraction with an LSTMbased encoder for natural language processing, enabling efficient multi-modal information fusion.
- > Designed a custom fusion module employing multiple transformation layers, dropout regularization, and multiplicative interactions to seamlessly combine image and question embeddings, followed by an MLP for answer classification.

Visual Grounding with DETR and BERT

Pennsylvania State University

- > Developed a visual grounding model by integrating a DETR-based visual backbone with a BERT text encoder, enabling effective fusion of image and language modalities for precise object detection.
- > Implemented a novel visual-linguistic fusion module utilizing a learnable token, transformer architecture, and custom projection layers, optimized with GIoU and Smooth L1 loss functions for bounding box regression.

Image Captioning with Encoder-Decoder Architecture

Pennsylvania State University

- > Developed an captioning model by integrating a CLIP-based vision encoder with a transformer mapping module and a GPT-2 text decoder, enabling robust and coherent caption generation.
- > Engineered key components including image-to-text embedding transformation, custom positional embedding integration, and dynamic token decoding using pre-trained transformer APIs to enhance model performance.

CUDA-based Blocked All-Pair Shortest Path

Pennsylvania State University

- > Developed a CUDA-based blocked APSP algorithm, achieving a $56 \times$ speedup by leveraging advanced blocking, shared memory optimizations, and loop unrolling.
- > Explored various block sizes; found 16×16 optimal for performance, minimizing cache misses and balancing ILP.

MPI + OpenMP Distributed Algorithm

Pennsylvania State University

- > Implemented a distributed version of the Floyd-Warshall algorithm, achieving $1.94 \times$ speedup for 1,000-vertex graph.
- > Handled uneven graph partitions with MPI Scattery/Gathery, ensuring correctness even when vertices were not divisible by the number of processes and threads.

Dec'23

Nov'23

Oct'23

Sep'23

April'23

March'23

References

Prof. Swaroop Ghosh (Advisor)

Professor, IEEE and AAIA Fellow School of EECS Pennsylvania State University szg212@psu.edu (814) 865-1298

Prof. Nikolay Dokholyan

G. Thomas Passananti Professor, APS Fellow Department of Pharmacology, Biochemistry and Molecular Biology Penn State College of Medicine nxd338@psu.edu (717) 531-5177

Prof. Mahmut Taylan Kandemir

Professor, IEEE Fellow School of EECS Pennsylvania State University mtk2@psu.edu (814) 863-4888

Prof. Abhronil Sengupta

Monkowski Career Development Associate Professor, IEEE & ACM Senior Member School of EECS, Materials Research Institute Pennsylvania State University sengupta@psu.edu (814) 867-4776